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Abstract. There exist some criticisms of the Bethe ansatz formulation predicting a discon- 
tinuity for the sine-Gordon soliton mass at  finite temperatures.  The basic ideas and  some 
key steps of the  Bethe ansatz thermodynamics a re  examined a n d  clarified along with 
associated criticisms. The validity of the Bethe ansatz theory is demonstrated a n d  a n  
experimental  implication is discussed. 

Over the last several years, a serious controversy has arisen over the Bethe ansatz ( B A )  

formulation of the equilibrium statistical mechanics of the sine-Gordon ( SG) model, 
particularly the soliton mass at finite temperatures. Chung and Chang [ l ]  claimed 
that the finite-temperature soliton mass is discontinuous as a function of coupling 
constant within a BA theory, whereas Johnson and Fowler [2,3] and Bullough [4] 
insist that the soliton mass cannot be discontinuous. The problem is not simply a 
terminological misconception, as is clear in a recent article by Fowler and Johnson 
(FJ)  [3]. They argued that the soliton mass discontinuity arises from the existence of 
certain zero-binding-energy states, and therefore it is merely an  artifact of the Chung 
and  Chang BA thermodynamic formulation. Moreover, FJ and Timonen et a1 [ 5 ]  
proposed a definition of soliton mass which shows continuity at a series of coupling 
constants where our theory predicts a discontinuity. In this paper, I shall fully examine 
and  clarify the BA thermodynamic formulation in its basic ideas and  some key steps. 
It will be demonstrated that the Chung and Chang B A  theory is free from errors, 
whereas the existing criticisms are inconclusive. Experimentally, 1 predict that some- 
thing like the broken curve in figure 1 would be observed for the finite-temperature 
SG soliton mass as a function of the coupling constant. 

Let us start with elementary excitations in the SG model; solitons, antisolitons and  
their bound states, i.e. breathers. As is well known, the SG model is equivalent to the 
massive Thirring model, with the identification: solitons + fermions, antisolitons + 
antifermions and  breathers + fermion-antifermion bound states. On the other hand, 
the BA theory works on breathers, holes in the Dirac sea and  long strings or Korepin 
( K - )  excitations and needs to identify holes plus K-excitations in terms of fermions+ 
solitons and  antifermions + antisolitons. Concerning this identification, what one could 
show within a BA theory is that in the charge neutral sector, holes plus K-excitations 
are always identified as equal numbers of unbound solitons and  antisolitons as far as 
energy and  momentum are concerned. K-excitations are unphysical objects, i.e. they 
d o  not contribute to physical quantities such as energy, momentum and free energy 
[6]. One concludes from this that the energies, momenta and free energies carried by 
holes are exactly twice those of solitons in the charge neutral sector. However, in 
addition to this information, the BA thermodynamics formulation requires an  explicit 
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Figure 1. Soliton mass as a function of the coupling constant at T = 2 .  The mass and 
temperature are measured in the unit of the zero-temperature free soliton mass. The full 
curve is the Bethe ansatz/factorised S-matrix method result, whereas something like the 
broken curve is expected to be observed experimentally. 

form of the free energy contribution from solitons, which is beyond the ability of the 
BA theory. This is simply because the B A  theory cannot describe a soliton-antisoliton 
backscattering without the help of the K-excitations, which means that the solition or 
antisoliton degree of freedom cannot be singled out in the B A  theory [7]. It is in this 
point that the factorised S-matrix method developed by Chung er al [8] is superior to 
the BA method; unlike the latter, the former method allows us to write the quantisation 
of soliton momentum in the same form as that of hole momentum, which implies that 
the free energy carried by the soliton can be written in the same form as that carried 
by the hole. In this way, the crucial equations (2) and (3)  below are justified. 

Given temperature T and coupling constant F,  our goal is to find the thermally 
renormalised energy-momentum dispersion relations for soliton, antisoliton and 
breathers, their concentrations and respective contributions to the free energy. There 
is no particular role in the BA thermodynamics for the heat-bath?. Although the BA 

formulation applies a variational principle to the free energy, the effect of the heat 
bath is essentially the Boltzmann factor exp(-H/kT).  That is, the BA formulation 
exactly describes the equilibrium statistical mechanics of the s c  model. Thus the 
unusual discontinuity found in the soliton mass at finite temperatures, if true, is due 
to an unusual property of the SG model, i.e. a complete integrability. The point in 
question, then, is how well a completely integrable model can describe real physical 
systems. A well known example in this respect is the Kondo model, solved by Bethe 
ansatz [9], to describe a magnetic impurity in the sea of conduction electrons. The 
BA analysis predicts a specific heat and susceptibility in excellent agreement with 
experiment. Indeed, FJ pointed out this fact to insist that the BA thermodynamics is 

t Our argument in [ I ]  (pp 2891, 2892) about the heat bath is erroneous. It should be corrected as in the 
present paper. 
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not as fragile as it might seem. This might be true for macroscopic quantities like 
specific heat which are smooth functions of the coupling constant, as was rigorously 
proved by Araki [ l o ]  and  explicitly shown by the BA analysis for the SG model, but 
is not quite so obvious for microscopic quantities like soliton mass. 

Here we look at criticisms of the soliton mass discontinuity. Fowler and Johnson 
[ 3 ]  insist that the B A  results for soliton mass should be experimentally observed without 
modification (like specific heat in the Kondo problem), and therefore a discontinuity 
is unphysical. They propose a definition of soliton mass which shows continuity at  
the series of coupling constants in question. On the other hand, Bullough [4] insists 
that the identification of holes plus K-excitations in terms of solitons and  antisolitons 
is impossible, and  therefore the soliton mass should be defined such that it does not 
show an  unphysical discontinuity. As is demonstrated in the above, the identification 
problem is positively resolved. In  the rest of the paper, I will examine essential steps 
of the BA analysis concerning the soliton mass along with associated criticisms. In the 
end, I will reach the conclusion that the FJ argument is far from convincing, and  their 
definition of soliton mass is neither logically consistent nor well grounded. As for the 
discontinuous jump in the soliton mass, as shown by a full curve in figure 1, it should 
be regarded as a mathematical singularity of the idealistic, i.e. completely integrable, SG 

model. In reality, small non-integrable perturbations always exist, and  such a singularity 
would be more or less relaxed to something like a broken curve in the figure. Although 
the physics is different, similar situations are often encountered; a familiar example 
is superconductivity. In this second-order phase transition, a specific heat should 
ideally have a discontinuous jump  at the critical point, but in reality the jump is always 
rounded off due to inhomogeneity etc. 

We now take a close look at the BA analysis. The soliton mass discontinuity in 
question occurs as the coupling parameter passes through the values p = m / (  n + l),  
where n is an integer. In the intervals r r ( n  - l ) / n  < p s m / ( n  + 1)  we have n - 1 
different breathers as well as solitons and  antisolitons, and all the quantities are 
continuous in these intervals. To be more specific and  for simplicity, consider p = 7 / 2  
and  7r/2 < p s 2 v / 3 .  The former case describes non-interacting solitons and anti- 
solitons. In the latter case, we have one type of breather in addition to solitons and  
antisolitons. The BA analysis of the latter case is as follows. Consider p = 
5 7 ( l + m ) / ( l + 2 m )  (integer m a l )  and let E ~ ,  and E: ( j = 1 , 2 ,  . . . ,  m - I ) ,  respec- 
tively, be renormalised dispersion curves of the breather, the hole and  the K-excitations. 
The coupled integral equations for these quantities have the following structure [ 11: 

where Eb and Eh  are excitation spectra for breathers and holes at T = 0 and Fb, Fh 
and F: denote certain functionals. Explicit forms are given in [ 1 3 ,  but are not necessary 
here. As is discussed in the above, the soliton contribution to the local (in rapidity 
space) free energy is written as 

and the hole free energy should be twice the soliton free energy, which with the help 
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of (2) implies that 

1 n [ l + e x p ( - ~ ” / ~ ) ] = 2 1 n [ l + e x p ( - ~ * / T ) ]  ( 3 )  

where y is a field theoretic renormalisation factor and  E ’  is the dispersion curve of 
the SG soliton. Solving the integral equations (1) and  (3), we obtain E ’  which, for 
vanishing momentum, represents the soliton mass at finite temperatures. Such an  
analysis was done before for the entire attractive regime [ l ] ,  and  the full curve in 
figure 1 shows the soliton mass as a function of coupling constant. 

What then, is controversial in the above BA analysis? It is the physical meaning 
of the E functions. While the E functions are proved to be the excitation spectra in 
[l], it is argued by FJ that there are some special cases where the E function does not 
correspond directly to a physical excitation curve at finite temperature. Details will 
be given below, but my point against their criticism is that the BA analysis including 
the above mentioned proof equally applies over the entire interval T (  n - l ) / n  < p s 
m / ( n  + 1). 

The physical origin of the discontinuous jump  is clear. Each time p passes through 
m / ( n  + I ) ,  n = 1 , 2 , .  . . , from above, the highest-energy breather dissociates into a 
soliton-antisoliton pair. Since the free energy is a continuous function of p, a sudden 
disappearance of the free energy due to the breather dissociation should be compensated 
by a sudden increase of the free energy due  to solitons and antisolitons, which due to 
(2) results in a sudden decrease of the soliton mass. Now, the FJ argument against 
the discontinuity is that if one looks at p = 7 / 2 ,  for example, it is simply non-interacting 
solitons and antisolitons and  the discontinuity arises when one considers a zero-binding- 
energy breather as an  independent excitation. If  we looked only at the point p = 7 1 2 ,  
nobody would try to rearrange free solitons and  antisolitons into solitons, antisolitons 
and  zero-binding-energy breathers. One should rather consider the coupling interval 
p = 7 / 2 +  6; O <  6 s 7 / 6  and bear in mind that this spuriously looking zero-binding- 
energy breather is obtained in the limit 6 -+ 0. In this coupling segment, we have soliton, 
antisoliton and  one type of breather with in general a finite binding energy relative to 
an  unbound soliton-antisoliton pair, and  all the quantities are analytic. There is no 
particular difference in the description among 6 = 7 1 6 ,  0.1, 0.001 and  0. Due to the 
complete integrability of the SG model, the breather is always a well defined excitation 
no matter how small the binding energy. Fowler and  Johnson also gave a definition 
of soliton mass (cf equation ( 6 )  in [ 3 ] ;  note that our equation (3) is nor a definition 
but is derived) just for the point p = 7 / 2 + 0 .  With no plausibility argument given (it 
is nor forced out by a free-energy consideration or the like), it is an  arbitrary definition 
only for the sake of continuity in the soliton mass. In short, they essentially consider 
only the point p = ~ / 2 ,  not the proper connection between the point p = 712 and the 
segment 7 1 2  < p s 2 7 1 3 .  

Finally, consider the free-phonon limit p -+ 7 -0. At exactly p = T ,  the system 
represents non-interacting phonons, whereas at p + T - 0, the system is described by 
an  infinite number of breathers all of which look like zero-binding-energy bound states 
of phonons. If one looks only at this limit, there is no  need for breathers. However, 
if one wishes to describe a general coupling regime exactly, the necessity of breathers 
is unquestioned. One should, rather, take a viewpoint that the BA theory which exactly 
describes the thermodynamics of the SG model for general coupling constants indeed 
contains the free-phonon theory as a special limit. Here Johnson and  Fowler [ 2 ]  
develop a similar argument as in the free-fermion case, and make the criticism that 
while the phonon mass is temperature independent, the lowest breather mass is strongly 
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temperature dependent. From this, they conclude again that the E function in the BA 

theory does not correspond directly to a physical excitation curve at finite temperatures. 
However, their conclusion is based on an erroneous identification between the linear 
phonon and  the lowest-energy breather. They are not the same object; the phonon is 
a boson, but all the breathers are essentially fermions. 

To conclude, the validity of the Chung and Chang Bethe ansatz thermodynamic 
theory predicting a discontinuous soliton mass at finite temperatures is demonstrated. 
An experimental observation of the variation of the finite-temperature soliton mass 
with coupling constant in a real physical system is eagerly awaited. 
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